Efficient Partitioning and Delta Lake Overwrite in PySpark

Dhruv Singhal
2 min readNov 18, 2023

--

Welcome to a comprehensive tutorial on writing to Delta tables with efficient partitioning using PySpark! 🚀 In this guide, we’ll explore the concepts of partitioning and Delta Lake in the context of a real-world scenario.

Prerequisites:

  1. Environment Setup: Ensure you have access to a Databricks workspace or a local Apache Spark setup.
  2. Data: Have a source dataset in JSON format. For simplicity, let’s assume it contains a column named PARTITION_COLUMN.
# Step 1: Import Required Libraries
from pyspark.sql import SparkSession

# Step 2: Create a Spark Session
spark = SparkSession.builder.appName("DeltaPartitionTutorial").getOrCreate()

# Step 3: Read Data from JSON
src_path = "/path/to/source/data"
flat_df = spark.read.format('json').load(src_path)

# Step 4: Discover Distinct Partition Values
partition_values = flat_df.select("PARTITION_COLUMN").distinct().collect()

# Step 5: Iterate Over Partition Values and Write to Delta Table
destination_path = "/path/to/destination/delta/table"

for pv in partition_values:
partition_value = pv[0]

# Step 5.1: Filter DataFrame based on partition column value
filtered_df = flat_df.filter(f"PARTITION_COLUMN = '{partition_value}'")

# Step 5.2: Write to Delta table with overwrite and partitioning
filtered_df.write.mode('overwrite') \
.option("replaceWhere", f"PARTITION_COLUMN = '{partition_value}'") \
.format('delta') \
.partitionBy("PARTITION_COLUMN") \
.save(destination_path)

# Step 6: Display Delta Table Content (Optional)
delta_table_content = spark.read.format("delta").table(destination_path)
delta_table_content.show()

# Step 7: Stop Spark Session
spark.stop()

Explanation:

  • Read Data from JSON: Load your source data from a JSON file into a DataFrame (flat_df).
  • Discover Distinct Partition Values: Find distinct values in the PARTITION_COLUMN to determine partitions.
  • Iterate Over Partition Values and Write to Delta Table: Loop through distinct partition values. Filter the DataFrame for each partition. Write to the Delta table with overwrite, specifying the partition condition.
  • Display Delta Table Content: (Optional) Check the content of the Delta table after writing.

We hope you find this tutorial insightful! 🌟 Don’t forget to add comments for better code understanding. Feel free to comment if you have any questions or share this tutorial with your fellow data enthusiasts! Happy coding! 🚀🔍📊 #PySpark #DeltaLake #DataEngineering #Tutorial

--

--

Dhruv Singhal
Dhruv Singhal

Written by Dhruv Singhal

Data engineer with expertise in PySpark, SQL, Flask. Skilled in Databricks, Snowflake, and Datafactory. Published articles. Passionate about tech and games.

No responses yet