Temporal Mastery in PySpark: Decoding Data Sequences with lag() Function 🕰️✨

Dhruv Singhal
3 min readDec 21, 2023

--

Delving into the realm of PySpark SQL often requires navigating through time-bound challenges. Enter the protagonist of our narrative — the lag function. In this comprehensive guide, we'll embark on a journey to unveil the prowess of the lag function, equipping you to navigate temporal intricacies within your PySpark DataFrames.

Unraveling the Essence of lag

The lag function, a cornerstone of PySpark's window functions, offers a portal to time travel within your DataFrame. It allows you to peer into the past by fetching the value that resides a specified number of rows before the current row, providing a dynamic tool for temporal analysis.

Setting Sail: A Quick Introduction

Let’s commence our expedition with a hands-on example that illuminates the simplicity and potency of the lag function.

from pyspark.sql import SparkSession
from pyspark.sql.window import Window
from pyspark.sql.functions import lag, col
# Create a Spark session
spark = SparkSession.builder.appName("TemporalAnalysisExample").getOrCreate()
# Sample DataFrame for temporal analysis
data = [(1, '2022-01-01', 100),
(2, '2022-01-02', 150),
(3, '2022-01-03', 200),
(4, '2022-01-04', 180),
(5, '2022-01-05', 220)]
columns = ['id', 'date', 'value']
df = spark.createDataFrame(data, columns)
# Define a window specification
windowSpec = Window.orderBy('date')
# Apply the lag function to fetch the previous value
result_df = df.withColumn('previous_value', lag(col('value'), 1).over(windowSpec))
# Witness the magic
result_df.show()

Output:

+---+----------+-----+--------------+
| id| date|value|previous_value|
+---+----------+-----+--------------+
| 1|2022-01-01| 100| null|
| 2|2022-01-02| 150| 100|
| 3|2022-01-03| 200| 150|
| 4|2022-01-04| 180| 200|
| 5|2022-01-05| 220| 180|
+---+----------+-----+--------------+

In this captivating example, the lag function gracefully introduces a new column, 'previous_value,' offering a glimpse into the value of the previous row within the ordered window.

Customizing the Journey: Beyond the Basics

The true prowess of the lag function emerges when you tailor it to your temporal inquiries. Whether it's peering two steps back or furnishing a default value for rows without a precedent, lag adapts to your temporal queries.

# Apply lag with a count of 2 and a custom default value
result_df_custom = df.withColumn('value_two_steps_back', lag(col('value'), 2, default=0).over(windowSpec))
result_df_custom.show()

Output:

+---+----------+-----+--------------+---------------------+
| id| date|value|previous_value|value_two_steps_back|
+---+----------+-----+--------------+---------------------+
| 1|2022-01-01| 100| null| 0|
| 2|2022-01-02| 150| 100| 0|
| 3|2022-01-03| 200| 150| 100|
| 4|2022-01-04| 180| 200| 150|
| 5|2022-01-05| 220| 180| 200|
+---+----------+-----+--------------+---------------------+

In this bespoke exploration, the lag function extends its capabilities, providing the value from two steps back and gracefully handling rows without a precedent by using the default value.

The Grand Finale

The lag function in PySpark SQL serves as a potent ally for unraveling temporal intricacies within your data. Whether you're conducting temporal analysis or crafting a journey through time, lag stands ready to accompany you on your PySpark adventure.

If this guide sparked your curiosity, shower it with a round of applause 👏. Share your thoughts, queries, or suggestions to further our exploration of PySpark’s temporal dimensions.

Embark on your temporal odyssey with PySpark! 🕰️🚀

--

--

Dhruv Singhal
Dhruv Singhal

Written by Dhruv Singhal

Data engineer with expertise in PySpark, SQL, Flask. Skilled in Databricks, Snowflake, and Datafactory. Published articles. Passionate about tech and games.

No responses yet